Product Manual

HDL Purification Kit (Ultracentrifugation Free)

Catalog Number

AAA11420

10 preps

FOR RESEARCH USE ONLY Not for use in diagnostic procedures

Introduction

Lipoproteins are submicroscopic particles composed of lipid and protein held together by noncovalent forces. Their general structure is that of a putative spheroidal microemulsion formed from an outer layer of phospholipids, unesterified cholesterol, and proteins, with a core of neutral lipids, predominately cholesteryl esters and triacylglycerols (TAG). Very low density lipoprotein (VLDL), a spherical particle with a diameter of 30-100 nm, is the major plasma vehicle for TAG and is the precursor to Low density lipoprotein (LDL). Each VLDL contains one molecule of a hydrophobic protein known as apolipoprotein B-100 (Apo B), as well as multiple copies of apolipoprotein E and apolipoprotein C.

High Density Lipoprotein (HDL) is also a spherical particle with diameter of about 10 nm (Figure 1). HDL contains the Apoliprotein AI and AII molecules. HDL and LDL cholesterol levels in the blood are important indicators of many disease states. High blood levels of LDLs are associated with health problems and cardiovascular disease. For this reason, LDL is often referred to as the "bad cholesterol." LDL particles that accumulate within arteries can form plaques over time, which can increase chances of a stroke, heart attack, or vascular disease. HDL particles are able to remove cholesterol from within arteries and transport it back to the liver for re-utilization or excretion, which is the main reason why the cholesterol carried within HDL particles is sometimes called "good cholesterol." Monitoring circulatory levels of different lipoproteins is critical to the diagnosis of lipid transport disorders such as atherosclerosis.

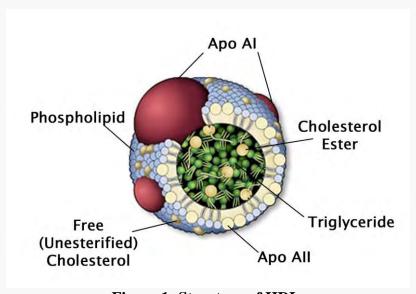


Figure 1: Structure of HDL.

The HDL Purification Kit uses Dextran Sulfate to selectively precipitate HDL. The kit allows for the purification of HDL without the need for ultracentrifugation. The lipoprotein particles are highly purified through a series of precipitation and low speed centrifugation steps. Each kit provides sufficient reagents to perform up to 10 preps, and each preparation can purify up to 10 mL of serum or plasma samples with a yield of \sim 4500 µg of HDL per mL for human samples (expected yield will vary by species).

Related Products

- 1. MBS168705: Malondialdehyde (MDA) Modified Human Low Density Lipoprotein (LDL)
- 2. MBS168802: Copper (Cu++) Oxidized Human Low Density Lipoprotein (LDL)
- 3. MBS168646: Human Oxidized LDL ELISA Kit (MDA-LDL Quantitation)
- 4. MBS168574: Human Oxidized LDL ELISA Kit (HNE-LDL Quantitation)
- 5. MBS168109: Total Cholesterol Assay Kit (Fluorometric)
- 6. MBS168251: HDL and LDL/VLDL Cholesterol Assay Kit
- 7. MBS169041: LDL/VLDL Purification Kit (Ultracentrifugation Free)
- 8. MBS168884: LDL/VLDL and HDL Purification Kit (Ultracentrifugation Free)

Kit Components

- 1. Dextran Solution (Part No. 260801): One 8 mL bottle
- 2. Precipitation Solution A (Part No. 260802): One 30 mL amber bottle
- 3. Tris Solution (Part No. 260805): One 50 mL bottle containing 20 mM Tris, pH 7.5
- 4. Dextran Removal Solution (Part No. 260808): One 10 mL bottle
- 5. 5X HDL Wash Solution (Part No. 260809): One 12 mL bottle

Materials Not Supplied

- 1. Serum or Plasma Samples
- 2. PBS
- 3. Microcentrifuge or Centrifuge
- 4. 10 μL to 1000 μL adjustable single channel micropipettes with disposable tips

Storage

Upon receipt store Dextran Removal Solution at room temperature. Store all other components at 4°C.

Preparation of Reagents

- HDL Resuspension Buffer: Dilute Dextran Solution 1:100 and Precipitation Solution A 1:10 in Tris Solution. For example, add 50 μL of Dextran Solution and 0.5 mL of Precipitation Solution A to 4.45 mL of Tris Solution. Stir to homogeneity. Prepare only enough for immediate use and do not store unused buffer.
- 1X HDL Wash Solution: Dilute the 5X HDL Wash Solution to 1X with deionized water. Stir to homogeneity. Store unused solution at 4°C.

Purification Protocol

Note: The purification protocol below is written for a 10 mL sample size. For smaller sample volumes, scale down each step proportionally.

I. Dextran Precipitation

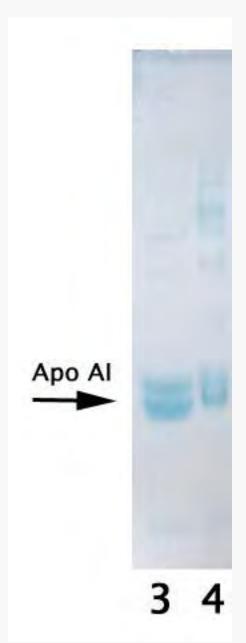
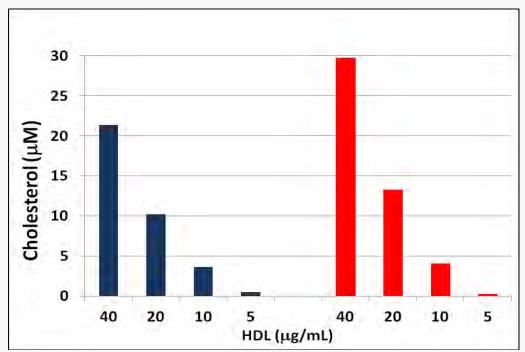
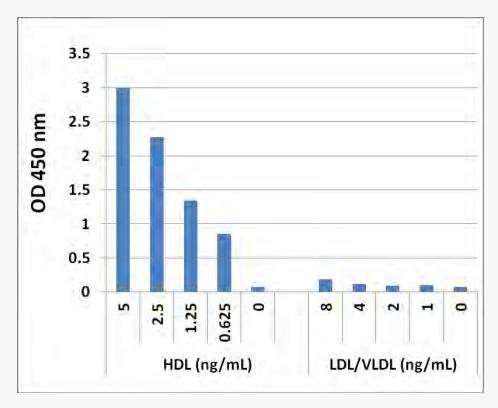
- 1. To 10 mL of serum or plasma on ice, add 50 μ L of Dextran Solution and 500 μ L of Precipitation Solution A. Incubate 5 minutes on ice.
- 2. Spin at 6000 x g 10 minutes at 4°C.
- 3. Transfer the supernatant to a new tube for use in section II below. Discard the pellet.

II. HDL Purification

- 1. To 10 mL of supernatant from section I above, add 600 μL of Dextran Solution and 1.5 mL of Precipitation Solution A. Incubate for 2 hours at room temperature.
- 2. Spin 18,000-20,000 x g for 30 minutes at 4°C.
- 3. Discard supernatant and resuspend pellet in 5 mL of HDL Resuspension Buffer (see Preparation of Reagents Section). Mix thoroughly by pipetting up and down.
- 4. Spin 6000 x g for 10 minutes at 4°C.
- 5. Discard supernatant and resuspend pellet in 6 mL of 1X HDL Wash Solution (see Preparation of Reagents Section).
- 6. Shake for 30 minutes at 4°C. Shaking speed should be sufficient to dissolve pellet, but not so vigorous that bubbles form.
- 7. Spin 6000 x g for 10 minutes at 4°C.
- 8. Transfer the supernatant to a new tube and add 900 μ L of Dextran Removal Solution. Mix thoroughly by pipetting up and down.
- 9. Incubate for 1 hour at 4°C.
- 10. Spin 6000 x g for 10 minutes at 4°C.
- 11. Transfer the supernatant (containing purified HDL) to a new tube.
- 12. Dialyze the purified HDL in PBS and determine the protein concentration.

Example of Results

The following figures demonstrate typical results with the HDL Purification Kit. One should use the data below for reference only. This data should not be used to interpret actual results.

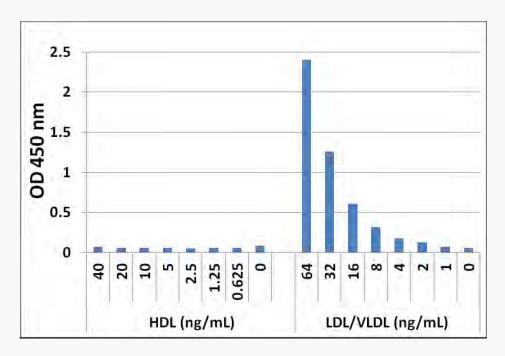

Figure 2: SDS PAGE Gels of Purified Lipoproteins. $20 \mu g$ of HDL purified by the MBS168884 kit (lane 3) or ultracentrifugation (lane 4) was loaded on a 12% Bis Tris Gel and stained with Coomassie Brilliant Blue Dye.

Figure 3: Detection of Cholesterol in purified HDL Samples. Purified HDL from the LDL/VLDL and HDL Purification Kit (blue bars) or ultracentrifugation (red bars) was tested for the presence of Cholesterol using the Total Cholesterol Assay Kit (Cat. # MBS168109).

Figure 4: Detection of ApoA1 in purified Lipoprotein Samples. Purified HDL or LDL/VLDL from the LDL/VLDL and HDL Purification Kit was tested for the presence of ApoA1 by ELISA.

Figure 5: Detection of ApoB in purified Lipoprotein Samples. Purified HDL or LDL/VLDL from the LDL/VLDL and HDL Purification Kit was tested for the presence of ApoB by ELISA.

References

- 1. Atmeh R. F. (1990) J Lipid Res, **31**: 1771-1780.
- 2. Havel R.J., Eder H.A., and Bragdon J.H. (1955) J. Clin. Invest, 34: 1345-1353.
- 3. Gaubatz J.W., Chari M.V., Nava M.L, Guyton J.R., and Morrisett J.D. (1987) *J Lipid Res*, **28**: 69-79.
- 4. Kostner G.M., Ibovnik A., Holzer H., and Gillhofer H. (1999) J Lipid Res. 40: 2255-2263.
- 5. Hirowatari Y., Yoshida H., Kurosawa H., Shimura Y., Yanai H., and Tada N. (2010) *J Lipid Res.* **51:** 1237–1243.
- 6. Lasser N.L., Roheim P.S., Edelstein D., and Eder H.A. (1973) J Lipid Res. 14: 1-8.
- 7. Camus M-C., Chapman M.J., Forgez P., and Laplaud P.M. (1983) J Lipid Res. 24: 1210-1228.

Recent Product Citations

- 1. Holzer, M. et al. (2022). HDL isolated by immunoaffinity, ultracentrifugation, or precipitation is compositionally and functionally distinct. *J Lipid Res*. doi: 10.1016/j.jlr.2022.100307.
- 2. Praja, R.K. et al. (2022). Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy Discriminates the Elderly with a Low and High Percentage of Pathogenic CD4+ T Cells. *Cells*. **11**(3):458. doi: 10.3390/cells11030458.
- 3. Aggarwal, G. et al. (2021). Myeloperoxidase-induced modification of HDL by isolevuglandins inhibits paraoxonase-1 activity. *J Biol Chem.* doi: 10.1016/j.jbc.2021.101019.
- 4. Gilad, D. et al. (2019). Paraoxonase 1 in endothelial cells impairs vasodilation induced by arachidonic acid lactone metabolite. *Biochim Biophys Acta Mol Cell Biol Lipids*. **1864**(3):386-393. doi: 10.1016/j.bbalip.2018.12.008.
- 5. Holzer, M. et al. (2016). Refined purification strategy for reliable proteomic profiling of HDL2/3: impact on proteomic complexity. *Sci. Rep.* **6**:38533.